Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy.

نویسندگان

  • Yoon-Young Choi
  • Sheng Tong
  • Stephen Ducharme
  • Andreas Roelofs
  • Seungbum Hong
چکیده

A charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films. Both the direction and amount of the collected current were controlled by changing the polarity and area of the poled domains. The endurance of charge collection by rubbing the CGM tip on the polymer film was limited to 20 scan cycles, after which the current reduced to almost zero. This degradation was attributed to the increase of the chemical bonding strength between the external screening charges and the polarization charges. Once this degradation mechanism is mitigated, the CGM technique can be applied to efficient energy harvesting devices using polymer ferroelectrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH-control of the protein resistance of thin hydrogel gradient films.

We report on the preparation and characterization of thin polyampholytic hydrogel gradient films permitting pH-controlled protein resistance via the regulation of surface charges. The hydrogel gradients are composed of cationic poly(2-aminoethyl methacrylate hydrochloride) (PAEMA), and anionic poly(2-carboxyethyl acrylate) (PCEA) layers, which are fabricated by self-initiated photografting and ...

متن کامل

Charge gradient microscopy.

Here we present a simple and fast method to reliably image polarization charges using charge gradient microscopy (CGM). We collected the current from the grounded CGM probe while scanning a periodically poled lithium niobate single crystal and single-crystal LiTaO3 thin film on the Cr electrode. We observed current signals at the domains and domain walls originating from the displacement curren...

متن کامل

Nanoelectromechanics of polarization switching in piezoresponse force microscopy

Nanoscale polarization switching in ferroelectric materials by piezoresponse force microscopy in weak and strong indentation limits is analyzed using exact solutions for coupled electroelastic fields under the tip. Tip-induced domain switching is mapped on the Landau theory of phase transitions, with domain size as an order parameter. For a point charge interacting with a ferroelectric surface,...

متن کامل

AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor with Polarized P(VDF-TrFE) Ferroelectric Polymer Gating

Effect of a polarized P(VDF-TrFE) ferroelectric polymer gating on AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) was investigated. The P(VDF-TrFE) gating in the source/drain access regions of AlGaN/GaN MOS-HEMTs was positively polarized (i.e., partially positively charged hydrogen were aligned to the AlGaN surface) by an applied electric field, resulting in a...

متن کامل

Local Polarization, Charge Compensation, and Chemical Interactions on Ferroelectric Surfaces: a Route Toward New Nanostructures

The local potential at domains on ferroelectric surfaces results from the interplay between atomic polarization and screening charge. The presence of mobile charge affects surface domain configuration, switching behavior, and surface chemical reactions. By measuring the temperature and time dependence of surface potential and piezo response with scanning probe microscopies, thermodynamic parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016